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3 Experiments

3.1 Data
I tested the performance of versification-based attribution on three corpora of poetic 
texts: The Corpus of Czech Verse (Plecháč 2016; Plecháč and Kolár 2015), Metricalizer—the 
corpus of German Verse (Bobenhausen and Hammerich 2015; Bobenhausen 2011) and the 
Spanish-language Corpus de Sonetos del Siglo de Oro (Navarro-Colorado, Ribes-Lafoz and 
Sánchez 2016; Navarro-Colorado 2015). For simplicity, these are denoted as CS, DE 
and ES respectively.

The general characteristics of these corpora are given in TAB. 3.1 and FIG. 3.1.

# of authors # of poems # of lines # of tokens
CS 613 80 229 2 727 632 14 923 528
DE 248 53 608 1 716 348 10 462 211
ES 52 5078 71 150 465 982

TAB. 3.1: Corpora size.

Attribution experiments clearly require the thorough tagging of all corpora. TAB. 3.2 
shows that by default, only CS satisfied all of the required levels of annotation.

CS DE ES
Tokenised 1 1 0
Lemmatised 1 0 0
Morphologically tagged 1 0 0
Phonetically transcribed 1 1 0
Metrically annotated 1 1 —
Stress annotated 1 1 1
Rhyme annotated 1 1 0

TAB. 3.2: Default tagging of corpora CS, DE, ES (1: tagged, 0: not tagged, —: not 
applicable).
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It was therefore necessary to perform additional tagging. Tokenisation (ES), lemma-
tisation (DE, ES) and morphological tagging (DE, ES) were done with the stochastic 
tagger TreeTagger (Schmid 1994). Phonetic transcription (ES) took place via the popu-
lar TTS synthesizer Espeak. Rhyme recognition (ES) was done with the Python pack-
age RhymeTagger (Plecháč 2018).

3.1.1 Tagging  Accuracy

Th e key issue for any automatic tagging system is its accuracy. For most of the tools 
used, published empirical accuracy estimations were available:

Morphological tagging, lemmatisation, tokenisation
— Spoustová et al. (2007) and Skoumalová (2011) each used a manually annotated 

Czech corpus to evaluate the morphological tagging of the combined stochastic 
rule-based tagger by which the CS corpus had originally been tagged. Both eval-
uations reported a value of 0.95 (share of correctly labelled tokens).

FIG. 3.1: Number of verse lines matched to the years of birth of their authors 
(50-year range). Circle size reflects the ratio of the given period to the total number 
of lines in the corpus.
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— Horsmann, Erbs and Zechs (2015) evaluated the morphological tagging provided 
by TreeTagger using German data from the Tüba-DZ corpus. Giesbrecht and Evert 
(2009) made a similar assessment using the TIGER corpus of newspaper texts. 
The author of TreeTagger published his own evaluation albeit based on a rather 
small body of texts (Schmid 1994). All of these studies reported values of approx-
imately 0.97 (share of correctly labelled tokens).

— Göhring (2009) evaluated the morphological tagging provided by TreeTagger us-
ing a set of 200 manually tagged Spanish sentences. Instead of the portion of 
correctly labelled tokens, precision and recall values were reported for each tag 
in the tagset. Both these values achieved a micro-average of 0.94.

— As for lemmatisation and tokenisation, these were assumed to be at least as accu-
rate as the morphological tagging to which they are closely related in both taggers.

Metre and stress annotation
— Based on manually annotated samples, the accuracy of metrical recognition in 

the CS corpus was estimated at 0.95 (Plecháč 2016).
— Navarro-Colorado (2017) extracted a random sample of 100 sonnets from the ES 

corpus, and this was manually annotated by three subjects. The inter-annotator 
agreement was found to be 0.96. There was a 0.95 level of agreement of auto-
mated stress annotation between at least two of the annotators.

— For the DE corpus, no accuracy estimation of metre/stress annotation had been 
published.

Rhyme annotation
— The accuracy of RhymeTagger was estimated using manually annotated data in 

Czech, English and French (Plecháč 2018). Precision (P) and recall (R) were as 
follows: EN: P = 0.96; R = 0.88; FR: P = 0.94; R = 0.87; CS: P = 0.94; R = 0.96.

These values suggest that there was cause for optimism about the quality of the data 
annotation. On the other hand, the methods of evaluation differed across the cor-
pora. Moreover, for any linguistic annotation (tokenisation, lemmatisation, morpho-
logical tagging), accuracy when tagging verse is almost certainly lower than reported 
owing to (1) the peculiarities of poetic speech (neologisms, word order inversions, 
etc.) and (2) the composition of works in older forms of the respective languages than 
those the tools were designed for and tested on.

For these reasons, I performed my own small-scale evaluation. I asked native speak-
ers of each language, all of whom were professional linguists, to inspect random 
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samples from the corpora.13 Since the annotations captured different linguistic levels 
(from individual sounds to rhymes that often spanned multiple lines), three kinds of 
samples were extracted from each corpus:
(1) Sample for the evaluation of tokenisation, lemmatisation, morphological tag-

ging, phonetic transcription and stress annotation (CS: 52 lines / 287 tokens / 
511 syllables, DE: 55 lines / 244 tokens / 377 syllables, ES: 98 lines / 627 tokens / 
1078 syllables); the CS and DE samples consisted of at least the first eight lines14 
of randomly selected poems; the ES samples consisted of seven randomly se-
lected sonnets;

(2) Sample for the evaluation of metre (CS: 120 lines, DE: 114 lines): each sample was 
made up of at least the first eight lines of randomly selected poems and

(3) sample for the evaluation of rhyme (CS: 86 rhymes, DE: 97 rhymes, ES: 183 
rhymes); the CS and DE samples consisted of the initial lines of randomly se-
lected poems that were extracted so that no rhyming lines were split; the ES 
sample consisted of 20 randomly selected sonnets.

TAB. 3.3 and TAB. 3.4 show the portion of tags that were evaluated as being correct. 
For rhyme annotation, I report both precision (the share of tags that corresponded with 
actual rhymes) and recall (the share of actual rhymes recognised). Since morphological 
tagging was used solely for rhyming words (cf. Section 2.2), I report not only overall 
accuracy but also the accuracy for line endings alone. As all of the values exceeded 0.9, 
all levels of annotation accuracy were found to be sufficient for my needs.

3.1.2 Subcorpora

I extracted eight subcorpora from CS, DE and ES (CS1, CS2, CS3, DE1, DE2, DE3, 
ES1, ES2). In each case, the authors in the subcorpus had been born in a preselected 
time span. These eras were chosen based on two factors: (1) the need to provide suf-
ficient data (see below) and (2) the desire to approximate common literary periodisa-
tions where possible (e.g. CS1 comprised authors of the Czech National Revival; CS2 

13 Generous assistance was provided by Michal Kosák (Institute of Czech Literature, Czech Academy 
of Sciences), Michael Wögerbauer (Institute of Czech Literature, Czech Academy of Sciences), Helena 
Bermúdez-Sabel (Université de Lausanne) and Clara Isabel Martínez Cantón (Universidad Nacional de 
Educación a Distancia, Madrid).
14 The logic behind the choice of opening lines was that this would provide evaluators with sufficient 
context in which to judge the results of disambiguation. This was important both from the standpoint of 
metre (e.g. possible metrical shifts within a poem might lead an evaluator to misclassify it) and rhyme (if 
one rhyming line fell outside a sample, then this too might result in misclassification).
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comprised the “Lumír” generation; DE3 was mainly composed of German Romantic 
authors).

One metre or group of closely related metres was selected for each subcorpus. The 
breakdown was as follows: CS1: trochaic tetrameters with both strong and weak end-
ings (T4); CS2–3: iambic pentameter with weak endings (I5w); DE1–3: accentual verse 
(F); and ES1–2: hendecasyllabic verse (11σ).15

Each author was represented by at least 10 samples written in the relevant metre(s). 
Each sample consisted of 100 lines and at least 40 rhyming pairs. Multiple poems 
could be combined in a sample, and no poem contributed to more than one sample.

Details of the subcorpora can be seen in TAB. 3.5.

3.2 Versification-Based Attribution
In the first battery of experiments, I tested the performance of attribution based solely 
on versification features.

To begin, I reduced each subcorpus to 50 samples as follows: (1) five authors were 
randomly selected (this did not apply to CS3 and ES1, which both comprised only 
five authors) and (2) 10 samples were randomly selected for each author. Each sample 

15 This was the only metre in the ES corpus.

Tokenisation Lemmatisation
Morphological tagging Phonetic 

transcriptionOverall Line endings
CS 1 0.9692 0.9577 0.9302 1
DE 1 0.9385 0.9590 0.9836 1
ES 1 0.9426 0.9011 0.9984 0.9936

TAB. 3.3: Accuracy estimations for tokenisation, lemmatisation, morphological 
tagging and phonetic transcription.

Rhyme annotation
Stress annotation Metrical annotation

Precision Recall
CS 0.9882 0.9767 1 1
DE 1 0.9794 0.9602 1
ES 0.9800 1 0.9944 —

TAB. 3.4: Accuracy estimations for annotations of rhyme, stress and metre.
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was then represented as a vector defined by the following versification features (as 
described in detail in Chapter 2):
(1) frequencies of rhythmic 2-, 3- and 4-grams for syllabic and accentual syllabic 

verse (CS, ES); frequencies of the 100 most common rhythmic types for accen-
tual verse (DE);

(2) frequencies of morphological, phonetic and rhythmic rhyme characteristics; and
(3) frequencies of sounds.

I opted for an SVM as a classifier using the one-vs.-one strategy for multiclass classifi-
cation (cf. Section 1.4.2). Implementation took place through the SVC module of the 
scikit-learn library16 with the following settings (cf. Section 1.4.1):

16 <https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html>

Subcorpus Metre(s) Era of 
birth

# of 
authors Authors (# of samples)

CS1 T4 1760–1820 9

Čelakovský, František Ladislav (12); Havelka, Matěj (13); 
Hněvkovský, Šebestián (11); Kulda, Beneš Metod (27); 
Nejedlý, Vojtěch (17); Picek, Václav Jaromír (21); Pohan, 
Václav Alexander (10); Tablic, Bohuslav (16); Vinařický,  
Karel Alois (15)

CS2 I5w 1840–1855 7
Čech, Svatopluk (13); Kvapil, František (11); Mokrý, Otokar 
(15); Nečas, Jan Evangelista (10); Sládek, Josef Václav (16); 
H. Uden (17); Vrchlický, Jaroslav (281)

CS3 I5w 1860–1870 5
Klášterský, Antonín (64); Kvapil, Jaroslav (19); Leubner, 
František (10); Machar, Josef Svatopluk (22); Sova,  
Antonín (15)

DE1 F 1650–1699 6
Brockes, Barthold Heinrich (51); Drollinger, Carl Friedrich 
(11); Gottsched, Johann Christoph (29); Kuhlmann, Quirinus 
(30); Neukirch, Benjamin (21); Tersteegen, Gerhard (25)

DE2 F 1730–1754 5
Goethe, Johann Wolfgang (46); Jacobi, Johann Georg (12); 
Müller, Friedrich (15); Pfeffel, Gottlieb Konrad (28); Wieland, 
Christoph Martin (23)

DE3 F 1760–1794 7
Bernhardi, Sophie (12); Eichendorff, Joseph von (32); 
Grillparzer, Franz (52); Müller, Wilhelm (16); Schenkendorf, 
Max von (10); Schulze, Ernst (19); Tieck, Ludwig (28)

ES1 11σ 1500–1560 5
de Acunya, Hernando (10); de Borja, Francisco (17); 
de Cetina, Gutierre (31); de Góngora, Luis (14); de Herrera, 
Fernando (39)

ES2 11σ 1561–1599 6
Argensola, Bartolome (19); de Quevedo, Francisco (63); 
de Rojas, Pedro Soto (15); de Tassis y Peralta, Juan (25); 
de Ulloa y Pereira, Luis (13); de Vega, Lope (167)

TAB. 3.5: Subcorpora details (T4: trochaic tetrameter with both strong and weak 
endings; I5w: iambic pentameter with weak endings; F: accentual verse; 11σ: hen-
decasyllabic verse).
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— kernel = “linear” (no kernel transformation);
— C = 1 (default value of the penalising parameter; different settings had only a neg-

ligible impact on results).

For other parameters, default values were used.
Accuracy for each subcorpus was estimated using leave-one-out cross validation. As 

there was a fairly low number of samples per class, using standard leave-one-out vali-
dation might have biased the results since the actual author was only represented by 
nine samples in the training data while the other authors were each represented by 
10 samples. To eliminate this risk, one randomly selected sample was dropped from 
the training data for every author besides the test sample author. This equalising ap-
proach was applied in all of the experiments described in this book, unless indicated 
otherwise.

To achieve more representative results, I repeated this entire process 30 times with 
a new random selection of both authors and samples in each iteration. The entire pro-
cedure is captured in the following code in Python:

'''
A dict contains authors' samples (represented by vectors):

samples = {
 'author1': [sample1, sample2, …],  
 'author2': [sample1, sample2, …],
…
}
'''

import random
from sklearn.svm import SVC

classifier = SVC(kernel='linear', C=1)
n_authors = 5
n_samples = 10
n_iterations = 30

for iteration in range(n_iterations):
 selected_samples = {}
 correct_classifications = 0

 # Select 5 authors/10 samples at random
 for author in random.sample(samples.keys(), n_authors):
  selected_samples[author] = random.sample(samples[author], n_samples)

 # Cross-validation: iteratively select one sample as the test sample
 for test_author in selected_samples:
  for i,test_sample in enumerate(selected_samples[test_author]):

   # Add remaining samples of the test sample author to the training set
   X = selected_samples[test_author][:i] + selected_samples[test_author][i+1:]
   y = [test_author] * (n_samples - 1)
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   # Add samples of other authors to the training set but always
   # drop one sample at random
   for a in [x for x in selected_samples if x != test_author]:
    X.extend(random.sample(selected_samples[a], n_samples - 1))
    y.extend([a] * (n_samples - 1))
   
   # Train the classifier and classify the test sample
   classifier.fit(X, y)
   predicted = classifier.predict([test_sample])
   if predicted[0] == test_author:
    correct_classifications += 1

 print('iteration #{0}: accuracy = {1}'.format(
  iteration + 1,
  correct_classifications / (n_samples * n_authors)
 ))

The results of cross-validation are given in FIG. 3.2.17 Since each of the 300 values 
significantly exceeded the random baseline (for five authors represented by 10 samples, 
each RB = 0.2; cf. Section 1.4.4), I judged versification features to be a reliable indica-
tor of a text’s authorship.

These results, however, differed greatly across the subcorpora. Generally the mod-
els fell into two groups:
(1) Highly accurate models (CS1–3, ES1) whose medians ranged from 0.94 to 0.96 and 

lower quartiles ranged from 0.90 to 0.95 and
(2) Accurate enough models (DE1–3, ES2) whose medians ranged from 0.74 to 0.82 and 

lower quartiles ranged from 0.72 to 0.78.

There are many possible reasons for these differences, but they are almost impossible to 
trace since machine learning generally works like a “black box” (we have access to both 
the input and the output but what’s going on inside is difficult to interpret). However, 
one plausible explanation may relate to the amount of data. For authors with a large 
number of samples—for example, Jaroslav Vrchlický (281 samples), Lope de Vega (168 
samples), Francisco de Quevedo (64 samples), Johann Wolfgang Goethe (46 samples), 
Barthold Heinrich Brockes (51 samples) and Franz Grillparzer (52 samples)—recognition 
tended to be less accurate than it was for other authors in the same subcorpus (TAB. 3.6). 
If we assume that the larger an author’s body of work (or more precisely, the longer their 
career), the greater its stylistic variation, this phenomenon is quite intuitive.

17 Unless stated otherwise, all boxplots in this book have the following format: The box shows the 
interquartile range (Q0,25; Q0,75); the midway line represents the median (Q0,5); and its value is given 
in the label rounded to two decimal places. Whiskers represent the minimum and maximum of the 
distribution.
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The presence of two of the mentioned prolific authors in the ES2 subcorpus might 
help explain why its values were lower than those for ES1. In the case of the German 
subcorpora, we may also consider the impact of a specific type of versification (ac-
centual verse) or a different method of rhythmic analysis (rhythmic types). Moreover 
a variety of cultural-historical factors may have been significant.18 These factors are, 
however, beyond the scope of the present work.

3.2.1 Feature Importance

Aside from the performance differences across the subcorpora, it is also worth ex-
ploring the contribution of particular features. Failing to do this would leave open 
the possibility that some of the features were completely irrelevant. The option would 
remain that purely versification-based features yielded no information at all and the 
classification depended entirely on sound frequencies. In languages with a highly 
phonemic orthography like Czech or Spanish, this would basically mean that the 

18 It may generally be assumed, for instance, that Romantic poets put more effort into individualising 
the rhythm of their poems than Baroque poets did.

FIG. 3.2: Cross-validation results for versification-based models (30 iterations 
with random sampling).
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classification was determined by a common stylometric indicator, that is, by character 
frequencies.

To explore how particular features contributed to the classification, I repeated the 
set of experiments described above. In lieu of cross-validation, this time all of the data 
were used to train the model for each of the 30 iterations with the one-vs.-rest strategy 
(each iteration, thus, constructed five hyperplanes). In this way, up to 30 hyperplanes 
were constructed for each author (the final number depended on how many times the 
author was randomly selected).

As discussed in Section 1.4.3 (formula 1.11), the separating hyperplane between 
two classes is defined by a normal vector w and a parameter b. Each iteration i  in 
which author A occurred, thus, produced a normal vector wA,i = (wA,i,1, wA,i,2, …, wA,i,m), 
whose coordinates conveyed information about the importance of particular features. 
However, rather than the coordinates themselves, which might be either positive or 
negative, what mattered here was their absolute value. The importance of the j-th fea-
ture (j ∈ [1,m]) for the recognition of A in iteration i was, thus, assessed based on the 
value of wA,i,j squared. The overall importance of j to A across all N iterations was then 
assessed by means of a score calculated as follows:

 
=

= ∑
2

, ,
,

1

N
A i j

A j
i

w
s

N
 (3.1)

Finally, for each A, I collected the 30 features with the highest scores (i.e. the features 
that generally contributed most to author recognition).

As the total number of these features was in the hundreds, I regrouped them into 
the categories given in Chapter 2. TAB. 3.7 shows the distributions of the 30 highest- 
scoring features across these groups.

r-2-gram r-3-gram r-4-gram rh-pos rh-snds rh-stress rh-word snds-f

CS1

Čelakovský 0.07 0.13 0.13 0.1 0.5 0.07
Havelka 0.1 0.1 0.1 0.03 0.43 0.07 0.07 0.1

Hněvkovský 0.07 0.07 0.03 0.1 0.57 0.03 0.13
Kulda 0.13 0.13 0.13 0.13 0.33 0.13
Nejedlý 0.33 0.07 0.13 0.07 0.33 0.03 0.03 0.3

Picek 0.17 0.2 0.23 0.1 0.2 0.03 0.03 0.03

Pohan 0.07 0.17 0.23 0.07 0.43 0.03
Tablic 0.07 0.1 0.13 0.03 0.4 0.13 0.1 0.03

Vinařický 0.1 0.13 0.17 0.03 0.23 0.07 0.07 0.2

CS2

Čech 0.03 0.13 0.63 0.03 0.03 0.13

Kvapil 0.07 0.13 0.23 0.07 0.27 0.03 0.2

Mokrý 0.13 0.2 0.3 0.2 0.03 0.03 0.1

Nečas 0.07 0.13 0.2 0.03 0.33 0.03 0.03 0.17
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r-2-gram r-3-gram r-4-gram rh-pos rh-snds rh-stress rh-word snds-f

CS2
Sládek 0.03 0.1 0.2 0.07 0.43 0.03 0.03 0.1

Uden 0.03 0.1 0.2 0.1 0.37 0.03 0.17

Vrchlický 0 0.07 0.13 0.1 0.47 0.03 0.03 0.13

CS3

Klášterský 0.2 0.2 0.27 0.03 0.17 0.13
Kvapil 0.1 0.1 0.07 0.13 0.4 0.03 0.17

Leubner 0.13 0.13 0.23 0.1 0.23 0.07 0.1

Machar 0.13 0.13 0.1 0.1 0.17 0.1 0.1 0.17
Sova 0.07 0.17 0.3 0.07 0.3 0.07

ES1

de Acunya 0.03 0.1 0.13 0.33 0.13 0.27
de Borja 0.23 0.27 0.3 0.1 0.1
de Cetina 0.1 0.2 0.3 0.17 0.07 0.17
de Góngora 0.07 0.03 0.1 0.27 0.27 0.03 0.23

de Herrera 0.03 0.1 0.2 0.17 0.23 0.27

ES2

Argensola 0.07 0.23 0.4 0.07 0.23

de Quevedo 0.13 0.1 0.13 0.27 0.13 0.03 0.2

de Rojas 0.17 0.13 0.27 0.17 0.1 0.17
de Tassis y P. 0.07 0.03 0.07 0.2 0.3 0.03 0.3

de Ulloa y P. 0.1 0.33 0.17 0.1 0.17
de Vega 0.13 0.13 0.07 0.27 0.2 0.2

DE1

Brockes 0.23 0.43 0.23 0.03
Drollinger 0.1 0.37 0.3 0.03 0.07 0.17

Gottsched 0.07 0.5 0.23 0.03 0.13

Kuhlmann 0.3 0.2 0.27 0.07 0.2

Neukirch 0.37 0.5 0.03 0.03 0.07

Tersteegen 0.13 0.5 0.13 0.03 0.03 0.2

DE2

Goethe 0.23 0.5 0.07 0.03 0.13
Jacobi 0.27 0.27 0.27 0.03 0.03 0.17

Müller 0.3 0.37 0.17 0.13
Pfeffel 0.2 0.33 0.17 0.17 0.03 0.13

Wieland 0.53 0.33 0.03 0.03

DE3

Bernhardi 0.3 0.33 0.27 0.03 0.07 0.07

Eichendorff 0.23 0.53 0.13 0.03 0.03
Grillparzer 0.3 0.3 0.2 0.03 0.13

Müller 0.33 0.33 0.2 0.03 0.07 0.07

Schenkendorf 0.47 0.17 0.13 0.03 0.07

Schulze 0.37 0.33 0.13 0.17 0.13

Tieck 0.33 0.33 0.07 0.03 0.03 0.23

TAB. 3.7: Feature importance. (1–3) rhythmic n-grams/rhythmic types, (4) mor-
phological characteristics of rhyme, (5) phonic composition of rhyme, (6) stress 
placement in rhyme, (7) word length in rhyme, (8) sound frequencies. The table 
shows the share of elements in these categories reflected in the 30 highest-scor-
ing features for each author. The highest value in each row is highlighted in bold.
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Among the Czech subcorpora, the phonic composition of rhymes tended to be the 
most prominent category. In contrast, for German works, morphological characteris-
tics played this role, and for the Spanish subcorpora, the results were somewhere in 
between. Rhythmic characteristics also played an important part in all three corpora. 
Of the rhythmic n-grams (CS, ES), rhythmic tetragrams were most prominent. The 
significance of word length and stress placement in rhyme was fairly weak across all 
the subcorpora.

Concerning the stress placement in rhyme, all values were zero in both Spanish 
subcorpora. The explanation for this was quite simple: one constant of the Spanish 
hendecasyllable is that the final stress falls on the penultimate syllable:

 ¡Peñascos Altos, de la mar batidos,
rhythm: 0 1 0 1 0 0 0 1 0 1 0
 de nubes coronadas las cabezas,
rhythm: 0 1 0 0 0 1 0 0 0 1 0
 donde se rompen en diversas piezas
rhythm: 0 0 0 1 0 0 0 1 0 1 0
 cristales espumosos resistidos
rhythm: 0 1 0 0 0 1 0 0 0 1 0
 (Lope de Vega)

There was no exception to this rule across the ES corpus. The null variability of this 
stress placement on rhyming words, thus, led to its null applicability for classification. 
On the whole, however, none of the categories appeared dominant and none could 
be dismissed as irrelevant.

3.3 Comparison  
with Lexicon-Based Models

The goal of the second battery of experiments was to compare the performance of 
versification-based models with that of models based on standard stylometric features 
(again for simplicity, these are referred to—albeit imprecisely—as “lexicon-based” 
models). Through these same tests, I also assessed the performance of models com-
bining versification-based and lexicon-based features.
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3.3.1 Fine-Tuning

Before proceeding with these comparisons, it was necessary to choose a domain 
(words, lemmata or character n-grams) and the number of types of each feature to be 
analysed. To find the optimal solution, I first trained and cross-validated many differ-
ent models and found the best-performing settings.

When fine-tuning, it is good practice to employ different datasets to the ones that 
will be used to measure accuracy. Since in this case, there was no need to limit the 
poems to any particular metre, plenty of data were available in CS and DE to build 
alternative subcorpora for validation (denoted here as CS’ and DE’; see TAB. 3.8 for 
details). This unfortunately was not the case for ES where there was no option but to 
use ES1 and ES2 themselves for this purpose. The results for those subcorpora, thus, 
provide only a very general comparison.

Subcorpus Era of birth # of authors # of samples
CS1’ 1760–1820 32 986
CS2’ 1840–1855 24 1190
CS3’ 1860–1870 27 1476
DE1’ 1650–1699 8 486
DE2’ 1730–1754 10 598
DE3’ 1760–1794 16 1295

TAB. 3.8: Validation of the subcorpora.

In training the models, I followed the design sketched above for five randomly se-
lected authors and 10 randomly selected samples (cf. Section 3.2). Over 30 iterations, 
I then performed leave-one-out cross-validation using an SVM with the set of features 
below:
(1) frequencies of the n most common words,
(2) frequencies of the n most common lemmata,
(3) frequencies of the n most common character bigrams,
(4) frequencies of the n most common character trigrams and
(5) frequencies of the n most common character tetragrams,

where n ∈ {50, 100, 150, …, 2000}.
The results (FIG. 3.3) confirmed a pattern observed in previous studies, namely that 

the relationship between the number of types analysed (n) and the attribution accu-
racy rose sharply, and then, after reaching a certain value, tended to stabilise (cf. Eder 
2011; Rybicki-Eder 2011; Smith-Aldridge 2011). While the value appeared similar for 
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FIG. 3.3: Cross-validation results for lexicon-based models (50, 100, 150, …, 
2000 most frequent character bigrams, character trigrams, character tetragrams, 
lemmata and words).
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all the features within a single subcorpus, it differed vastly across the subcorpora. Al-
though accuracy for ES1 peaked at n ≈ 200, in the cases of CS3’ and DE2’, it continued 
to increase up to the highest values of n observed.

FIG. 3.3 also shows that across all the subcorpora, lemmata outperformed words 
and all of the character n-grams. In the n-gram group, character trigrams proved more 
accurate than both character bigrams and character tetragrams in each subcorpus.

At first glance, it may seem, then, that the most reliable models were those based 
on the highest values of n. However, we should be aware of the risk of overfitting: 
when we take a higher number of common types into account, there is more chance 
that the classifier will not actually recognise the peculiarities of an author’s style but 
only respond to specific themes. An example may be found in one of the experiments 
I performed with the samples from Sigismund Bouška (1867–1942) and František   
Cajthaml-Liberté (1868–1936) where n = 2000. A list of the 10 most important features 
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(lemmata) for each of these authors (TAB. 3.9) shows that the classification was based 
primarily on thematic differences (Catholic themes vs. working-class themes). Had 
this model been applied to poems on different themes, it would probably have failed 
to distinguish the authors.

Bouška Cajthaml-Liberté
1 svatý (holy) práce (work)
2 boží (godly) černý (black)
3 nebesa (heaven) bída (poverty)
4 jaký (which) lid (people)
5 Kristus (Christ) chléb (bread)
6 mluvit (to speak) zítra (tomorrow)
7 volat (to call) dělník (workman)
8 nebeský (heavenly) ležet (to lie)
9 otec (father) ruch (tumult)
10 klín (lap) již (already)

TAB. 3.9: Most important features (lemmata) for the classification of works by 
Sigismund Bouška and František Cajthaml-Liberté (n = 2000).

I set out to test this hypothesis with another experiment. The goal was to assess how 
accurately lyric poems were classified by classifiers trained with narrative poems and 
vice versa. (I assumed here that literary genre had a similar effect to theme.) For this 
purpose, I selected five authors from CS2’ who had written narrative and lyric poems. 
These individuals were Svatopluk Čech, Eliška Krásnohorská, Rudolf Pokorný, La-
dislav Quis and Jaroslav Vrchlický (see TAB. 3.10 for details).

Author 
(# of lyric samples /  
# of narrative samples)

Lyric poems Narrative poems

Čech
(23/20) Jitřní písně; Nové písně Václav z Michalovic; Lešetínský kovář; 

Petrklíče
Krásnohorská
(37/25) Vlny v proudu; Letorosty Vlaštovičky; Šumavský Robinson;  

Zvěsti a báje
Pokorný
(17/9) S procitlým jarem; Vlasti a svobodě Mrtvá země

Quis
(11/10) Písničky Hloupý Honza; Třešně

Vrchlický
(42/34) Dni a noci; Hořká jádra; È morta Hilarion; Sfinx; Poutí k Eldoradu

TAB. 3.10: Lyric samples and narrative samples selected from CS2’.
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Over 30 iterations, nine narrative samples were randomly selected for each of the 
five authors.19 In each iteration, 40 different models were trained with n ∈ {50, 100, 
150, …, 2000} and these were then used to classify nine randomly selected lyric sam-
ples by each of the authors. The entire process was repeated in order to train the 
models with the lyric samples and classify the narrative samples.

The results are given in FIG. 3.4. While the recognition of narrative samples gener-
ally followed the pattern seen in FIG. 3.3, the recognition of lyric samples peaked at 
n = 450 and then declined significantly. In other words, this was another case of over-
fitting to the training data.

On this basis, I chose the 500 most common lemmata as the optimal reference for ver-
sification-based models. At this level, accuracy had either already peaked or only limited 
improvements could be expected while the risk of overfitting could still be considered 
rather low. Notably, these 500-dimensional vectors have often been used for authorship 
attribution with poetic texts (e.g. Craig and Kinney 2009; Smith and Aldridge 2011). 
For the sake of comparison, I also included two lower levels used elsewhere including 
in two influential studies: n = 150 (Burrows 2002) and n = 250 (Koppel and Schler 2004).

19 Here the number of samples was made equal to that of the author with the least samples 
(Pokorný).
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FIG. 3.4: Classification accuracy of lyric samples using 
models trained with narrative samples and vice versa.
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3.3.2 Results

To compare the versification-based and lemma-based models, I applied the procedure 
I had used with versification-based models alone. This entailed 30 iterations in which 
the subcorpora were each reduced to 50 samples (i.e. five authors with 10 samples 
each). During each iteration, I cross-validated the following:
(1) versification-based models (same feature set as in Section 3.2);
(2) lemma-based models (n = 500);
(3) combined models (concatenation of versification-based and lemma-based 

vectors).

The entire process was repeated with lemma-based models when n = 150 and n = 250.
The results are given in FIG. 3.5. They showed that:

(1) As expected (see Section 3.3.1), within lemma-based models, accuracy tended to 
grow as n increased.

(2) The accuracy of versification-based models was more or less stable across differ-
ent samplings.

(3) In six cases (CS1 with n = 150, CS2 with n ∈ {150, 250} and CS3 with n ∈ {150, 
250, 500}), versification-based models outperformed lemma-based models while 
in the remainder, lemma-based models proved more accurate.

(4) Both versification-based and lemma-based models were outperformed by com-
binations of these models in the cases of CS1–3 and DE2–3; this occurred at 
each of the three examined levels of n (all of these differences were statisti-
cally significant at a conventional significance level α = 0.05; see TAB. 3.11). For 
DE1 and ES1–ES2, however, combined models brought no improvement over 
 lemma-based ones.

Along with the concatenation of feature spaces, I also considered how the lexicon- 
based model and versification-based model might work as a voting ensemble. In this 
scenario, there were three possible classification outputs:
(1) correct prediction (the output of both models is the same and it identifies the 

actual author);
(2) false prediction (the output of both models is the same and it does not identify 

the actual author); and
(3) ambiguous prediction (the output of one model differs from that of the other).

FIG. 3.6 shows the results of testing this approach with the same samples used in 
the last battery of experiments. Though this approach excluded some samples as 
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ambiguous, there was a significant improvement in accuracy among the samples clas-
sification of which was unequivocal (i.e. both models predicted the same author) 
when compared to the results of the standalone (i.e. lemma-based, versification-based 
and combined) models tested above (Wilcoxon signed-rank test; α = 0.05) except in 
two instances. These were ES1 with n ∈ {250, 500} (where there was no room to im-
prove) and DE1 with n = 500.

It may be objected that an approach which throws away a significant portion of 
samples (in the case of DE2, up to 50%) is, in fact, useless. This is a valid concern 
when both models are weighted equally, but it does not apply when a lemma-based 
model (the type that is usually more accurate) is treated as primary and the versifica-
tion-based model only serves as supplementary evidence (i.e. in case of ambiguous 
prediction, we let the lemma-based model decide). In other words, if a lemma-based 
model predicts the same author as a versification-based model, the attribution is gen-
erally more reliable than one based on lemmata only.

3.4 Summary
The results presented in this chapter show that versification features are a reliable 
stylometric indicator. In particular, we can draw four conclusions:
(1) The accuracy of versification-based models is significantly higher than the ran-

dom baseline.
(2) Versification-based models occasionally outperform lexicon-based models.
(3) Both versification-based models and lexicon-based models are usually outper-

formed by models combining both feature sets.
(4) If a lexicon-based model confirms the prediction of a versification-based model, 

the attribution is generally more reliable than one based on lexical features 
alone.

n CS1 CS2 CS3 DE1 DE2 DE3 ES1 ES2
150 < 10−4 < 10−4 < 10−4 0.3878 < 10−4 0.0013 0.1 0.54
250 < 10−4 < 10−4 < 10−4 0.1739 0.0132 0.0347 0.36 0.33
500 < 10−4 0.0001 < 10−4 0.3608 0.0002 0.0077 0.08 0.11

TAB. 3.11: P-values for the difference between lemma-based and combined 
models (Wilcoxon signed-rank test). Statistically significant values (α = 0.05) ap-
pear in bold.
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